深圳市住建工程检测有限公司
    企业视频
    关于我们
  • 企业文化 组织结构 分支公司 售后服务 技术支持
黄冈屋顶光伏安全检测荷载报告 可靠单位
  • 黄冈屋顶光伏安全检测荷载报告 可靠单位
  • 黄冈屋顶光伏安全检测荷载报告 可靠单位
  • 黄冈屋顶光伏安全检测荷载报告 可靠单位

产品描述

品牌中测 分类房屋检测 数量100000000 种类可靠性鉴定 功能房屋检测单位
钢结构检测应用范围知识
钢结构中所用的构件一般是由钢厂批量生产,并需有合格,因此材料的强度及化学成分是有良好保证的。钢结构检测的重点在于安装、拼接过程中产生的质量问题。
一、钢结构工程中主要的检测内容有:构件尺寸及平整度的检测;构件表面缺陷的检测;连接(焊接、螺栓连接)的检测;钢材锈蚀检测;防火涂层厚度检测。如果钢材无出厂合格,或对其质量有怀疑,则应增加钢材的力学性能试验,必要时再检测其化学成分。
二、钢结构各检测规范的应用范围知识
三、构件尺寸及平整度的检测每个尺寸在构件的3个部位量测,取3处的平均值作为该尺寸的代表值。钢构件的尺寸偏差应以设计图纸规定的尺寸为基准计算尺寸偏差;偏差的允许值应符合其产品标准的要求。梁和桁架构件的变形有平面内的垂直变形面外的侧向变形,因此要检测两个方向的平直度。柱的变形主要有柱身倾斜与挠曲。检查时可先目测,发现有异常情况或疑点时,对梁、桁架可在构件支点间拉紧一根铁丝或细线,然后测量各点的垂度与偏差;对柱的倾斜可用经纬仪或铅垂测量。柱挠曲可在构件支点间拉紧一根铁丝或细线测量。
本公司是经住房和城乡核准颁发建设工程质量检测机构资质证书,是经过计量认证的第三方公正性检测机构,我司主要从事建设工程领域检测和房屋质量相关的技术服务,共有79检测项目,检测参数480个。我公司拥有一支高素质人才组成技术过硬的检测团队,检测技术人员具有较高的技术水平和丰富的检测工作经验,在各自的检测领域起着技术核心作用,有能力胜任各项检测工作。关于钢结构质量检测局,技术服务能力包括:钢结构主体结构的整体垂直度和整体平面弯曲的允许偏差;度大六角头螺栓连接副、扭剪型度螺栓连接副、钢网架用度螺栓、普通螺栓等紧固件的品种、规格、性能;度螺栓连接摩擦面的抗滑移系数试验和复验,需进行的螺栓实物小载荷试验检验,度螺栓连接副扭矩系数检验和复验;度螺栓紧固铀力(预拉力)复验;建筑结构安全等级为1级的和跨度≥40m钢网架节点承载力试验;钢网架完成后的挠度值测量;钢结构焊接超声波或射线探伤检验,钢结构防腐、防火涂装情况;钢材及焊接材料品种、规格、性能质量情况;钢结构安装的平面、竖向、节点联结的施工质量情况,柱脚及网架支座检查情况,钢结构房屋沉降观测情况,提出质量自检评定结果。深圳市住建工程检测有限公司 竭诚为您服务,承接全国业务范围,提供免费技术服务,联系电话:-, 李工
一、屋面光伏荷载报告——光伏电站的建设需要占据较大的土地面积,针对这一特点,需要选择土地辽阔、人口稀少以及太阳能资源丰富的地区,从我国目前已经开始建设的光伏电站来看,主要分布在我国西部地区。光伏电站的应用特点如下: 
  (1)由于西部地区煤矿资源丰富而且城市耗电量相对较低,光伏电站生产的电能无法就近使用,需要通过变电站升压并通过高压电缆进行远距离传输,其中存在较大的运输损耗; 
  (2)地价、额外的土地建设费用以及电站管理费用成为了光伏电站建设的附加成本,其可以达到光伏电站总建设成本的10%~20%左右; 
  (3)由于太阳能资源缺乏连续性,光伏电站直接并网之后,不但无法成为大型电网的备用电源,同时其发电的随机性还会加大电网对电力调配的难度。 
  而从我国的情况来看,在沙漠地区,光伏电站具有较好的应用价值,沙漠地区的土地利用家就只较低,而且面积广阔,其太阳能资源相对较为丰富,加上我国沙漠面积较大,未来在沙漠地区建设光伏电站将成为主要的趋势之一。 
  3.2光伏建筑 
  从沿海城市及中部和北部的工业城市来看,城市经济增长增速快、工业发达、土地资源紧缺,而传统的发电方式能以满足这些城市的用电需求,夏季经常出现拉闸限电的情况,针对这种情况,通过在建筑商安装光伏电池板成为了有效的解决方案之一。 
  通过建立光伏建筑形式使发电系统与用电设备之间的距离大大缩短,有效避免了电能在长距离线路传输中产生的大量损耗,同时还大大节约了长距离传输线路改造的成本,从这一方面的优势来看,光伏建筑业将成为城市可再生能源利用的主要方向之一。从集成技术来区分可以将光伏建筑分为光伏屋顶电站和光伏建筑一体化两类。其中光伏建筑一体化是通过将光伏发电系统、建筑幕墙以及屋顶等围护结构构建成一个整体结构,在具备围护结构功能的同时,还能为建筑提供电能,该类光伏建筑结构的安全性是需要重点考虑的方面。 
  3.3农村地区的应用 
         针对部分偏远农村地区,为了实现“送电到乡”工程,可以通过采用光伏发电的形式建立小型的光伏电站或者在农宅安装的光伏发电系统。即可有效解决偏远农村地区农户的用电问题,同时还有效解决了大量线缆敷设以及电路输送构件的成本,还避免了电能超长距离传输过程中的损耗。
二、屋面光伏荷载报告——公司具备以下检测能力:
1. 钢结构检测、焊缝质量无损探伤技术、钢网架结构的变形检测
2. 中小学校、幼儿园、等建筑物抗震
3. 建(构)筑物抗震、建(构)筑物综合抗震能力
4. 特种行业营业执照、教育办学所需的、房屋质量安全年审
5. 工业与民用建筑裂缝检测与评定
6. 公共场所及特种营业场所安全
7. 牌(T型)安全性构筑物、牌检测出合格报告
8. 公共建筑结构检测(安全性、可靠性、改造加层等检测)
9. 民用建筑、工业建筑厂房补办房屋安全检测
10. 基坑支护设计
11. 商务服务 房屋质量 房屋检测及抗震
12. 补办房屋安全检测。
黄冈屋顶光伏安全检测荷载报告
一、屋面光伏房屋荷载报告的作用:
(1)建立了光伏一体化屋面的标准单晶硅光伏组件支撑框架的有限元计算模型,分析了支撑框架在恒载、活载作用下的应力和位移。
(2)研究了框架梁截面尺寸、框架支柱截面尺寸、支柱高度和支柱约束等因素对温度应力和变形的影响,提出了改善温度应力的措施。通过单荷载作用与荷载和温度共同作用的对比,得到不同温差下的温度应力占总应力的比例。
(3)对框架柱与屋面预埋件连接节点进行了非线性分析,引入混凝土和钢材的材料非线性,模拟了由温度效应引起的预埋件受弯剪共同作用,以及预埋件与混凝土连接的粘结效应。研究结果表明:支柱截面的大小,约束和支柱高度都对温度应力有不同程度的影响;
整体尺寸较大时温度应力不容忽视,甚至有可能超过荷载作用;在框架梁和框架柱连接处开椭圆孔释放位移约束可有效降低温度应力;光伏支撑框架与屋顶预埋件的连接在温度效应下有可能发生破坏,设计时应进行承载力验算。研究成果为光伏一体化屋面规程的制定打下了基础,对光伏一体化屋面支撑框架的设计有参考价值。
先,一定要进屋安全检测。使用一系列检测的仪器、设备、工具和软件验算等技术手段,对建筑结构已经原材料的外观或内部的物理性能、化学性能等进行测试,并对检测数据进行加工、处理、分析。主要通过调查、现场检测、结构分析验算,对房屋安全性进行,主要适用于已发现安全隐患、危险迹象或其他需要评定安全性等级的房屋(适用于房屋报监、产权证)。
屋面光伏房屋荷载报告——超声波探伤在建筑钢结构厂房检测中的应用
目前常用的钢结构无损探伤主要有如下途径超声检测、射线检测、磁粉检测、渗透检测和涡流检测等五种检测方法,其中应用广操作方便的要属超声检测了。产生波在建筑中的探伤原理主要是基于其自身的特性,由于超声波波长很短,且穿透力十分强,超声波可以在不同介质中传播,一旦碰到不同介质的分界面它会自动发送折射、反射、绕射以及波形转换。此外,超声波具有很好的方向性,可以在黑暗环境中准确的找到目标,通过定向发射,能够很好的发现被检测焊缝存在缺陷的地方。在建筑钢结构检测中,通常会使用反射法来进行探伤,通过对反射回波的声压的高低能够很好的检测出缺陷的大小,是一种十分使用的检测方式。
焊缝中常见缺陷的类型及其在超声探伤中的识别
1、气孔
当焊接过程中焊接熔池还处在高温阶段时,这时如果吸收了气体或者相应冶金过程产生了一定量的气体,这些气体如果不能在冷却凝固前及时溢出那么后期就会在焊缝金属内形成气孔或空穴。当采用超声波检测气孔时,单个气孔形成的波形会较为稳定,并且回波高度低,气孔一旦十分密集,探头定向就会立刻产生波形此起彼伏的现象,从而达到探伤的目的。
2、夹渣
焊接后如果焊缝内有金属熔渣或者非金属夹杂物,那么就会在焊缝形成夹渣,通常它都是不规则分布,有点状也有条状。点状夹渣对于焊缝的整体强度没有太大影响,用超声波探测时波幅也不高。条状夹渣影响则会更大,探测时的回波通常会呈锯齿状,探头一旦进行平移,波幅会立刻有变化。
3、未焊透
如果焊接接头部分金属没有完全熔透,就会出现未焊透现象。未焊透通常多发于焊缝中心,并且长度较长,当探头在焊缝中心平移时,未焊透部分反射回的波形会较为稳定,在焊缝两侧进行同样的检测,反射波幅变化也不会太大。
4、未融合
当使用的填充金属与母材间未能完全熔合,或者填充金属层之间的熔合不透彻,这都是常见的未融合现象。当探头在未熔合区域平移时波形通常较为稳定,如果移到两侧,反射波幅则会有较大变化,有时甚至只能从一侧探到。
5、裂纹
如果在焊缝或母材的热影响区域内,在焊接过程中或者焊后出现局部破裂的缝隙,这通常可以称为裂纹。裂纹回波的波幅宽,并且回波高度大,当探头在其上经过时会连续出现反射波并且伴随着波幅的变化,随着探头转动波峰还会出现上下错动的现象。
6、结论
超声波探伤在建筑钢结构检测中确实有非常有效的帮助,凭借其自身具的相关特性能够很准确的实现对于钢结构焊缝的检测。针对不同类型的问题,探头平移时都会收到不同特征与性质的回波,采用超声波无损探伤对焊缝进行质量检测能够更好的确保钢结构的工程质量与工程强度。
黄冈屋顶光伏安全检测荷载报告
发展屋面光伏的前景巨大:分布式光伏发电作为一种新型的发电和用电模式,具有就近发电、就近并网、就近转换、就近使用的特点,近年来得到世界各国广泛的关注和推广。截至2010年底,全球分布式光伏发电累计装机容量为23.4GW,占同期光伏发电系统累计装机容量的66.8%,可见从世界范围内来看分布式发电是光伏应用的主流。因此,我国近年来已将分布式光伏发电作为发展清洁能源、化解过剩产能和应对大气污染的重要手段,不断新政策鼓励推广。目前,分布式光伏发电系统一般安装于建筑屋面,而工业厂房建筑大多是比较低矮、平整的厂房,用电需求大且电价高,于是成为大规模推广分布式光伏发电的场所。截至2006年底,我国拥有各类经济开发区8个(含高新区、工业园等),规划面积9949km2,建筑密度取29.28%(以2012年开发区调查结果为例),则可用于安装光伏系统的工业屋顶面积约达3000  km2,以每kw光伏阵列占地约10㎡计算,则装机容量可达到300GW,市场前景非常广阔。另一方面,我国分布式光伏发电的建设施工标准并不统一,针对不同类型屋面的承载能力评估不足,导致已建成的光伏项目运行质量堪忧。
一、屋面光伏荷载报告——光伏屋顶的特点
(1)光伏屋顶没有地域的限制,没有资源无枯竭的隐患存在。太阳能资源遍及全球,完全没有地域限制。我国地势优越,平均每天每m2 接受到的太阳能在4~6kW·h。光伏屋顶在-45~60℃都能工作。
(2)节能环保。光伏屋顶采用的能源是太阳能,是可以重复并无污染的能源,节能减排效果明显。
(3)光伏屋顶的适用范围广泛。光伏屋顶可以适用于写字楼、、宾馆饭店、学校、民用住宅小区等。
(4)光伏屋顶的占用空间小。光伏屋顶直接利用原建筑的屋顶空间,并无占用多余的空间。尤其在人口密集地区,屋顶可以使光伏发电系统不用额外占用昂贵的土地。
(5)。光伏屋顶从获取能源到利用能源直接花费的时间较短,电能损失较小,使用效率高。
(6)促进了屋面技术的发展。例如,发达正在推广的光伏电池薄膜复合在SBS改性沥青防水卷材上的光伏沥青卷材、光伏电池薄膜复合在瓦材上的光伏瓦,以及光伏电池薄膜复合在高防水卷材上的太阳能高卷材。这项新技术使得屋面在防水、保温隔热等基础上又增加了新的功能
光伏屋顶发展所面临的问题
光伏屋顶发电计划的确是为我国建筑业注入了新鲜血液,同样也为我国的房地产开辟了,但为何目前光伏屋顶却难以进入平常老百姓家中?我国光伏市场为何发展缓慢呢?原因在于其具体付诸实施时困难度不小,主要表现为以下几个方面。
(1)投入成本过高。在现今条件下,屋顶发电的设备价格和电价与传统能源发电方式相比成本偏高。目前这是普及光伏屋顶的主要瓶颈。
(2)广大群众对于光伏发电的认识不够,群众心理接受率不高。
(3)我国在光伏屋顶应用技术的研究方面,自主创新不够,市场发展缓慢,光伏产品的生产和研发也相对滞后,而且并无制度明确的光伏产品质量认证制度。
(4)既有建筑的光伏屋顶的改造难以实施。
(5)建筑从业人员对光伏建筑的认识存在不足。
黄冈屋顶光伏安全检测荷载报告
屋面光伏荷载报告:
(一)检测的分类 
一般来说,现场进行结构检测的过程通常会分为优检和普检两个部分来进行,然而无论是哪一个部分的检测,检测人员都需要先对影响房屋结构安全的房屋构件来进行检测,检测合格之后才能开始下一步的检测过程,对于不合格的地方应该通报质监部门进行处理。 
(二)施工部门 
在现场结构检测的过程之中,建筑的施工单位应该对监测部门的监测工作予以积极的配合,并且应该提前好相关工作的准备。 
(三)选点与检测 
在现场结构检测中,对于监测试点的选取应该随机进行,为了保证检测的公平性,试点应该由结构、监理机构和检测机构三方来共同抽取。在检测的时间和试点确定下来之后,单位应该及时对设计部门进行通知,提出待检测的构件和结构。另外如果工程需要进行复检,其试点的选取工作应该由施工、监理、检测机构和施工设计单位四方来共同参与。 
(四)结构检测的方法 
1、钢结构 
钢结构的检测指的是对钢质构件的性能或者质量的检测,其中可以细分为钢构件的连接、材料性能、尺寸与偏差、损伤与变形涂装与构造等方面的检测项目。在必要的时候,应该进行构件或结构的动力测试或者实载检验。与混凝土结构和砌体结构相比,钢结构在工程的应用中有着质量轻、材质均匀、强度高、韧性和塑性都比较好等特点,在某些工程建筑方面有着明显的优势。在钢结构的检测技术上,基本都是对其他行业的方法进行学习和借鉴。通常采用的方法有渗透检测、物流检测、射线检测、磁粉检测、涂层厚度检测、超声波无损检测以及钢材锈蚀检测等。  
屋面光伏荷载报告——屋顶铺设光伏荷载检测评级标准
工业厂房的构件、结构系统、单元应按下列规定评定等级:
1构件(包括构件本身及构件间的连接点)。
1)构件的安全性评级标准
a级:符合现行标准规范的安全性要求,安全,不必采取措施;
b级:略低于现行标准规范的安全性要求,仍能满足结构安全性的下限水平要求,不影响安全,可不必采取措施;
c级:不符合现行标准规范的安全性要求,影响安全,应采取措施;
d级:极不符合现行标准规范的安全性要求,已严重影响安全,必须及时或立即采取措施。
2)构件的使用性评级标准
a级:符合现行标准规范的正常使用要求,在目标使用年限内能正常使用,不必采取措施;
b级:略低于现行标准规范的正常使用要求,在目标使用年限内尚不明显影响正常使用,可不采取措施;
c级:不符合现行标准规范的正常使用要求,在目标使用年限内明显影响正常使用,应采取措施。
3)构件的可靠性评级标准:
a级:符合现行标准规范的可靠性要求,安全,在目标使用年限内能正常使用或尚不明显影响正常使用,不必采取措施;
b级:略低于现行标准规范的可靠性要求,仍能满足结构可靠性的下限水平要求,不影响安全,在目标使用年限内能正常使用或尚不明显影响正常使用,可不采取措施;
c级:不符合现行标准规范的可靠性要求,或影响安全,或在目标使用年限明显影响正常使用,应采取措施;
d级:极不符合现行标准规范的可靠性要求,已严重影响安全,必须立即采取措施。
2结构系统
1)结构系统的安全性评级标准:
A级:符合现行标准规范的安全性要求,不影响整体安全,可能有个别次要构件宜采取适当措施;
B级:略低于现行标准规范的安全性要求,仍能满足结构安全性的下限水平要求,尚不显着影响整体安全,可能有极少数构件应采取措施;
C级:不符合现行标准规范的安全性要求,影响整体安全,应采取措施,且可能有极少数构件必须立即采取措施;
D级:极不符合现行标准规范的安全性要求,已严重影响整体安全,必须立即采取措施。
2)结构系统的使用性评级标准:
A级:符合现行标准规范的正常使用要求,在目标使用年限内不影响整体正常使用,可能有个别次要构件宜采取适当措施;
B级:略低于现行标准规范的正常使用要求,在目标使用年限内尚不明显影响整体正常使用,可能有极少数构件应采取措施;
C级:不符合现行标准规范的正常使用要求,在目标使用年限内明显影响整体正常使用,应采取措施。
3)结构系统的可靠性评级标准
A级:符合现行标准规范的可靠性要求,不影响整体安全,在目标使用年限内不影响或不明显影响整体正常使用,可能有个别次要构件宜采取适当措施;
B级:略低于现行标准规范的可靠性要求,仍能满足结构可靠性的下限水平要求,尚不显着影响整体安全,在目标使用年限内不影响或尚不显着影响整体正常使用,可能有极少数构件应采取措施;
C级:不符合现行标准规范的可靠性要求,或影响整体安全,或在目标使用年限内影响整体正常使用,应采取措施,且可能有极少数构件必须立即采取措施;
D级:极不符合现行标准规范的可靠性要求,已严重影响整体安全,必须立即采取措施。
http://www.zcfwjc.com

产品推荐